Minimize the Percentage of Noise in Biomedical Images Using Neural Networks
نویسنده
چکیده
The overall goal of the research is to improve the quality of biomedical image for telemedicine with minimum percentages of noise in the retrieved image and to take less computation time. The novelty of this technique lies in the implementation of spectral coding for biomedical images using neural networks in order to accomplish the above objectives. This work is in continuity of an ongoing research project aimed at developing a system for efficient image compression approach for telemedicine in Saudi Arabia. We compare the efficiency of this technique against existing image compression techniques, namely, JPEG2000, in terms of compression ratio, peak signal to noise ratio (PSNR), and computation time. To our knowledge, the research is the primary in providing a comparative study with other techniques used in the compression of biomedical images. This work explores and tests biomedical images such as X-rays, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET).
منابع مشابه
The Application of Multi-Layer Artificial Neural Networks in Speckle Reduction (Methodology)
Optical Coherence Tomography (OCT) uses the spatial and temporal coherence properties of optical waves backscattered from a tissue sample to form an image. An inherent characteristic of coherent imaging is the presence of speckle noise. In this study we use a new ensemble framework which is a combination of several Multi-Layer Perceptron (MLP) neural networks to denoise OCT images. The noise is...
متن کاملAn Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کاملAircraft Visual Identification by Neural Networks
In the present paper, an efficient method for three dimensional aircraft pattern recognition is introduced. In this method, a set of simple area based features extracted from silhouette of aerial vehicles are used to recognize an aircraft type from its optical or infrared images taken by a CCD camera or a FLIR sensor. These images can be taken from any direction and distance relative to the fly...
متن کاملIntegration of Color Features and Artificial Neural Networks for In-field Recognition of Saffron Flower
ABSTRACT-Manual harvesting of saffron as a laborious and exhausting job; it not only raises production costs, but also reduces the quality due to contaminations. Saffron quality could be enhanced if automated harvesting is substituted. As the main step towards designing a saffron harvester robot, an appropriate algorithm was developed in this study based on image processing techniques to recogn...
متن کاملA New Method for Detecting Ships in Low Size and Low Contrast Marine Images: Using Deep Stacked Extreme Learning Machines
Detecting ships in marine images is an essential problem in maritime surveillance systems. Although several types of deep neural networks have almost ubiquitously used for this purpose, but the performance of such networks greatly drops when they are exposed to low size and low contrast images which have been captured by passive monitoring systems. On the other hand factors such as sea waves, c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014